A Comparative Study on PCA and KPCA Methods for Face Recognition
نویسندگان
چکیده
An online face recognition system is a dynamic topic in the field of biometrics. The human face has a principal role which consists of complicated combination of features that allow us to communicate, express our feelings and emotions. Principal Components Analysis (PCA) and Kernel Principal Components Analysis (KPCA) are techniques that have been used in face feature extraction and recognition. In this paper, we have compared a PCA algorithm with KPCA algorithm, in which AT&T data set is used for comparison, recognition of accuracy, variation in facial expression, illumination changes, and computation time of each method. To find Recall of each algorithm AT&T database is used which shows that Kernel-PCA have better performance.
منابع مشابه
Recognizing Face or Object from a Single Image: Linear vs. Kernel Methods on 2D Patterns
We consider the problem of recognizing face or object when only single training image per class is available, which is typically encountered in law enforcement, passport or identification card verification, etc. In such cases, many discriminant subspace methods such as Linear Discriminant Analysis (LDA) fail because of the non-existence of intra-class variation. In this paper, we propose a nove...
متن کاملA New Feature Extraction Method Based on the Information Fusion of Entropy Matrix and Covariance Matrix and Its Application in Face Recognition
The classic principal components analysis (PCA), kernel PCA (KPCA) and linear discriminant analysis (LDA) feature extraction methods evaluate the importance of components according to their covariance contribution, not considering the entropy contribution, which is important supplementary information for the covariance. To further improve the covariance-based methods such as PCA (or KPCA), this...
متن کاملNyström Approximations for Scalable Face Recognition: A Comparative Study
Kernel principal component analysis (KPCA) is a widelyused statistical method for representation learning, where PCA is performed in reproducing kernel Hilbert space (RKHS) to extract nonlinear features from a set of training examples. Despite the success in various applications including face recognition, KPCA does not scale up well with the sample size, since, as in other kernel methods, it i...
متن کاملAn Experimental Evaluation of Linear and Kernel-Based Methods for Face Recognition
In this paper we present the results of a comparative study of linear and kernel-based methods for face recognition. The methods used for dimensionality reduction are Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), Linear Discriminant Analysis (LDA) and Kernel Discriminant Analysis (KDA). The methods used for classification are Nearest Neighbor (NN) and Support V...
متن کاملAn Experimental assessment of the performance of Linear and Kernel-based Methods for Face Recognition
This paper presents the results of a comparative study of linear and kernel-based methods for face recognition. These experimental results include: (1) a comparative study of linear methods for feature extraction, such as Principal Component Analysis (PCA), Fisher’s Linear Discriminant Analysis (FDA), and kernel based methods for feature extraction, such as Kernel based Principal Component Anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016